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elements. It also takes into account the role of various rate
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being supplied to the fracture process (or embrittlement) zone.

Quantitative assessment of the model indicates very good agree-
ments between the model predictions and the observed crack growth
responses for AISI 4340 and 4130 steels tested in hydrogen and
for AISI 4340 steel tested in hydrogen sulfide. This model
accurately characterizes the reduction in crack growth rate and
the concomitant change in fracture mode at "high" temperatures.
Through its integration with the earlier models, based on rate
controlling processes, the model predicts the pressure and tempera-
ture dependence for K-independent crack growth over the entire
range of environmental conditions.
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A "HYDROGEN PARTITIONING" MODEL FOR HYDROGEN ASSISTED CRACK GROWTH

i
[
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Lehigh University
Bethlehem, PA 18015

ABSTRACT

A "hydrogen partitioning” model has been developed to account for the
pressure and temperature dependence for hydrogen-assisted crack growth. The
model gives explicit recognition to the role of hydrogen-microstructure inter-
actions in determining the distribution (or partitioning) of hydrogen among
the various microstructural elements (principally between the prior-austenite
grain boundaries and the matrix) and the rate of crack growth along the
elements. It also takes into account the role of various rate. controlling
processes in determining the rate that hydrogen is being qu???EU\tQ\E?e
fracture process (or embrittlement) zone.

™~
N

' ~
o Quantitative assessment of the model indicates very good agreements \‘~\~_~___‘
o between the model predictions and the observed crack growth responses for AISI
-, 4340 and 4130 steels tested in hydrogen and for AISI 4340 steel tested in

hydrogen sulfide. This model accurately characterizes the reduction in crack
growth rate and the concomitant change in fracture mode at “high' tempera-
tures. Through its integration with the earlier models, based on rate con-
trol 1ing processes, the model predicts the pressure and temperature dependence
fgr K-independent crack growth over the entire range of environmental condi-
tions.

; Y Visiting Scholar. MNow Associate Professor, Department of Materials Sci-
< ences, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
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1.  INTRODUCTION

Subcritical crack growth in high strength steels exposed to gaseous
environments has been widely studied from an interdisciplinary point of
view. A series of parallel fracture mechanics and surface chemistry
studies on AISI 4130 and 4340 steels, exposed to hydrogen containing
§ases (such as, hydrogen, hydrogen sulfide and water vapor) and to water,
have provided a fair understanding of environmentally assisted crack
growth [1-11].

It is now clear that environmentally assisted crack growth is con-
trolled by a number of processes in the embrittlement sequence [4]. The
various processes that might be involved are (i) transport of the gas or
gases to the crack tip, (ii) the reactions of the gas or gases with newly
created crack surfaces to evolve hydrogen (viz., physical and dissociative
chemical absorption in sequence), (ii1) hydrogen entry (or absorption),
(iv) diffusion of hydrogen to the fracture (or embrittliement) sites, and
(v) hydrogen-metal interactions leading to embrittlement (i.e., the
embrittlement reaction), see Fig. 1. According to the multi-reaction
rate theory [12], the overall crack growth response is governed by the
slowest unit process in the chain of processes operating in sequence.

Any 6ne of these processes may act as the rate-controlling process,
depending on the environment-material condition (material, environment,
pressure, temperature, etc.).

For AISI 4130 and 4340 steels exposed to hydrogén [1-3, 6-8] and

hydrogen sulfide [9], the K-independent Stage II crack growth exhibits

substantially different responses in two temperature regions, Fig. 2.

At "low" temperatures, crack growth reflects control by gas transport to 1;"'”




the crack tip (hydrogen sulfide at the lower pressure, curve b), by sur-
face reaction (hydrogen or water, curves ¢ and d), and by hydrogen dif-
fusion (hydrogen sulfide at the higher pressure, curve a). The crack
growth rates conform to the temperature and pressure dependence of the

rate controlling process {11]. At "high temperatures", the growth rates

are substantially lTower than those given by these processes, and some other
process appears to be in control. The intermediate region (Region B)

;; represents the transition between Regions A and C. The fundamental ques-
tion posed by these results is which process or processes cause the de-

crease in crack growth rate at "high temperatures".

;i Attempts to explain this behavior were first made by Williams,
} Nelson and Tetelman [1-3] in the early 1970's. According to their surface
E- reaction model, the high temperature region of crack growth response is

controlled by the equilibrium between absorbed hydrogen and gaseous hydro-

gen. Subseduently, several "surface reaction" models were proposed by
;5 other researchers [13-15]. These models are purely chemical and considered
. only surface reactions in controlling crack growth response even though
other processes might have been in control (Fig. 2) [9-11].

Recent fractographic studies on an AISI 4340 steel indicated that

the reduction in crack growth rate with increasing temperature into the
high temperature region is accompanied by a change in fracture surface

morphology; namely, from intergranular to transgranular (micro-void

coalescence type) failure [16]. This finding implied that the associated
change in hydrogen supply (as predicted by the surface reaction models)
could not be the sole cause for the observed change in crack growth

- response. The observed difference in fracture surface morphology
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suggested that different micromechanisms or different hydrogen embrittle-
. ment processes might be in control for the two temperature regions.

To clarify this issue, the response of different microstructural
elements to hydrogen embrittlement and the partitioning of hydrogen among
these elements as a function of temperature and pressure are considered.

A "hydrogen partitioning” model for crack growth in gaseous environments
is proposed. The model provides a direct correlation of crack growth
kinetics with the response of microstructural elements to hydrogen embrittle-

ment.

2. EXPERIMENTAL BASIS FOR THE MODEL

The proposed model is based on the following experimental findings

[16]:

(i) In the Tow temperéture region, the fracture surface
morphology is characterized by intergranular separation
along prior-austenite grain boundaries, with a small
amount of transgranular quasi-cleavage [2,3,17,18].

The fracture mode is unaffected by the rate controlling
process for crack growth as long as an adequate amount
of hydrogen is supplied.

(i1) The change in Stage II crack growth rate in going
from low to high temperature, with a maximum
rate at an dintermediate temperature, Iis
related to a transition from intergranular and quasi-

cleavage to microvoid coalescence modes of separation.
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(1ii) The temperature at which the transition in fracture
surface morphology occurs is dependent on hydrogen
and hydrogen sulfide pressure. The higher the
gas pressure, the higher is this temperature, This
trend is consistent with the effect of gas pressure
on the change in crack growth response from Tow to

high temperatures.

These fractographic observations are difficult to explain in terms of
the models proposed by Williams and Nelson et al. [1-3, 13-15]. The
observed difference in fracture surface morphology and the associated reduc-
tion in crack growth rates suggest that different micromechanisms or dif-
ferent hydrogen émbritt]ement processes need to be considered for the two
temperature regions.

To examine the role of micromechanism, one might divide the embrittle-
ment sequence roughly into three portions [16]. These three portions are
depicted schematically in Fig. 3. The first portion is concerned with the
supply of hydrogen, and includes gas-phase transport (i.e., external trans-
port), surface reactions, and diffusion (i.e., internal transport) of hydro-
gen to the embrittlement sites. The second portion involves the partition-
ing of hydrogen among the potential fracture sites in the micfostructure.
These sites, in AISI 4340 steel, include: (i) the prior-austenite grain
boundaries, (ii) the martensite lath or patch boundaries, and {110}a. and
{112}a- planes through the martensites, and (iii) the martensite lattice
itself. The third portion deals with the embrittlement reaction at each
type of sites, with the prior-austenite grain boundaries being most suscep-

tible and the martensite lattice least susceptible to hydrogen embrittlement.

ey L.
-----
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§ Cracking at the respective microstructural elements would depend on the
i concentration and rate of supply of hydrogen there. The overall crack

' growth rate would be determined by the rates of cracking through the par-

ticipating microstructural elements.

It is reasonable to suggest that the partitioning or distribution of

. TaTg 2”8 & A ™
N R

hydrogen to the different microstructural elements is a function of temper-
ature and pressure. Hence, the concentration and the rate of hydrogen
supplied to the different fracture sites become functions of temperature
and pressure. At Tow temperature (Region A), the prfor-austenite grain
boundaries and the s1ip planes are saturated by hydrogen. The fracture is

therefore predominantly intergranular, and includes a small amount of

quasi-cleavage. Because the rate of supply of hydrogen from the external
environment is relatively slow, crack growth is controlled by one of the

hydrogen supply processes [10,11]. At the higher temperatures, or Region

C, the hydrogen concentration at grain boundaries and slip planes is expec-

ted to drop quickly and more hydrogen goes into the martensite lattice.

Increasing amounts of microvoid coalescence or dimpled failure now occur

with increased temperature and result in slower crack growth rates.

Accordingly, the changes in crack growth rate and crack growth response

with temperature are attributed now to the transfer of micromechanisms of

fracture, instead of the processes of hydrogen supply. These considerations

are equally applicable to hydrogen and hydrogen sulfide.




3. ASSUMPTIONS AND BASIC EQUATIONS
In developing the model, the following five assumptions are
made:

(i) Crack growth is at steady state, and is in Stage II. Hence,
the crack growth rate remains constant at a given temper-
ature and hydrogen pressure, and is independent of the
stress intensity factor K.

(ii) The rate of hydrogen supplied to the fracture proces§
zone is governed by the controlling process for hydro-
gen supply. These processes include (a) transport of
the deleterious gas to the crack tip, (b) surface reaction
of the gas with the newly created surface at the crack
tip, and (c) diffusion of hydrogen to the embrittlement
region ahead of the crack tip.

(iii) The controlling process of hydrogen supply remains
unchanged over the range of temperature of interest;
that is, from Region A to Region C.

(iv) The rate of crack growth for each fracture mode is
determined by the rate of supply of hydrogen to each
type of fracture site, 6i'

(v) The different micromechanisms of cracking operate in
parallel or concurrently.

Based on these assumptions, the crack growth rate for the ith fracture
mode (or micromechanism), (da/dt);, 1is given by Eqn. (1). In

th

the equation, ay is the proportionality constant for the i~ mode.




(da/dt); = a3y (1)

For concurrent growth, the mean crack growth rate, (da/dt)II is the sum
of the products of growth rate and the corresponding areal fraction, fi»

of the individual modes on the fracture surface, and is given by Egn. (2).
(da/dt);; = ?fiaiQi (2)

For AISI 4340 steel fractured in hydrogen and hydrogen sulfide, the
areal fraction of quasi-cleavage (fq) is small (less than about 14%) as
compared with that of grain boundary separation at low temperatures,
and is nearly zero at the higher temperatures [16]. The contribution of
quasi-cleavage to the main crack growth rate, therefore, may be neglected.

Then, Eqn. (2) can be simplified as follows:

(da/dt)pp = foopQy + fia,Q,

= (fbabrb + fzasz)b (3)

where Q is the total rate of hydrogen supplied to fracture process zone,
and Kps K, are the hydrogen distribution coefficients (Kb = leé, Ky =
6£/é, and Kb+K2 =1).

Equations (2) and (3) are two of the basic equations for the model.

For simplicity, only Eqn. (3) is used in further quantification of the model.




4. DISTRIBUTION COEFFICIENTS AND HYDROGEN SUPPLY RATE

4.1 Distribution Coefficients “p and 3

The distribution coefficients ¥b and k, are defined as the fraction
of the rate of hydrogen being supplied to the grain boundaries and to the

lattice respectively, i.e.:
Ky = éb/d = (Qb/dz)/(1 + db/bz) (4.a)
e, = 0,00 = /(1 + Q/4,) | (4.b)

To estimate these coefficients, hydrogen distribution in a moving
frame of reference, with the origin at the crack tip, is considered first.
Because crack growth is assumed to be at steady state, witp constant speed
(da/dt)II, the .average concentration of hydrogen in the fracture process
zone, Cv, is independent of time within this moving frame. The average
hydrogen concentration in the grain boundaries (Cb) and in the lattice
(Cz) in the same zone are also time independent. The exact location,
shape and size of the fracture process zone, however, cannot be specified
at the present time. For these estimates, it is sufficient to assume it
to be inside a circle of diameter 2, with its center at the crack tip,
Fig. 4, and to assume that hydrogen is confined within this circle.

It can be readily shown that the rates of hydrogen supply to the
fracture process zone, and to the grain boundaries and the lattice within

this zone are given by Eqns. (5a) to (5¢c), respectively:
Q@ = cBe(da/dt)y; (5.a)

6b = C,0Be(da/dt) (5.b)
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Q, = C,(1-6)Be(da/dt) (5.c)

In Eqn. (5), & and (1-8) are the volume fractions of prior-austenite

grain boundaries and lattice, respectively in the fracture process zone.
Hydrogen concentration is given in moles per unit volume. By substituting
(5.b) and (5.c) into (4.a) and (4.b), the distribution coefficients become

[s/(1-8)1(C,/C))
1+[57(T:§7](E;7C;T (6.a)

b
Ky = THT67(T=5 (6.b)

In general, 6§ is negligibly small compared with 1. Therefore, Eqn. (6.a)
and (6.b) can be further simplified to the following form:
GCb/CL
Kp = W; (7.a)

- 1

The distribution coefficients (Kb and Kz) are now given in terms of the
ratio of local concentrations of hydrogen in the grain boundaries and
in the Tlattice, and the volume fraction of grain boundaries.

It is well demonstrated that grain bouhdaries are strong trapping
sites for hydrogen [19-21]. The equilibrium partitioning of hydrogen
between the grain boundaries and the lattice can be expressed by either
Boltzmann statistics (for dilute solution [22]) or by Fermi-Dirac statistics
(for more concentrated solution, or at low temperatures [23]). Even though

crack growth is assumed to be at steady state, conditions of equilibrium




may not always be established. Following Bockris [24], therefore, a "non-
equilibrium" parameter v is incorporated in the Boltzmann and the Fermi-

Dirac statistics:

Cb/Cz = t(a3/n) Nx exp (HB/RT) Boltzmann (8.a)

i r(a3/n)Nx exp(HB/RT)

Cb/Cz FZ(aS7nIN,C, exp " T Fermi-Dirac (8.b)

The parameter t is equal to 1 when trapping is in equilibrium. NX is the
density of trap sites in the grain boundaries (number of sites/m3), ais
the lattice parameter of the metal, n is the number of atoms per unit cell,
NA is Avogadro constant, and HB is the binding enthalpy of hydrogen to the
grain boundary. Detailed derivation of Eqns. (8.a) and (8.b) is given in
Appendix I. Final expressions for Kp and k, can be readily obtained by

substituting Eqns. (8.a) and (8.b) into Egqns. (7.a) and (7.b).

It should be noted that either the Boltzmann or the Fermi-Dirac
statistics may be used. The choice between these two statistics, however,
is not crucial to modeling and quantitative analyses, because both sets
give the same values for Ky and Kk, at Tow temperatures*. At high tempera-
tures, Boltzmann and Fermi-Dirac statistics themselves are essentially the
same. For simplicity, Boltzmann statistics are chosen for use in the

present study.

*By examining Eqns. (8.a) and (8.b), it can be seen that Ch/Cy>>1 when
the temperature is low for both statistics. Substituting k into Egns.
(7.a) and (7.b) gives <p=1, and a negligibly small value for Ko

=10~




4,2 Hydroéen Supply Rate 6 -

According to assumption (2), the rate of hydrogen supply is controlled
by one of the processes for hydrogen supply; with a particular process in
control over a given range of pressure and temperature. Using results
from recent studies and from modeling of crack growth for each of the con-
trolling processes [4-11, 25], the hydrogen supply rate (Q), for simplified

cases, may be given in the following form:

For transport control (based on Knudsen flow) [9,26]

4 « p,/T? (9.2)
For surface reaction control [8, 27]

Q « by exp(~Eg/RT) (9.b)
For diffusion control [28]

Q = p, exp(-E4/2RT) (9.¢)

In Eqn. (9), Po is the external pressure; m is the exponent for pressure
dependence for surface reaction; ES and Ed are the activation energies
for surface reaction and for diffusion, respectively; T is the absolute
temperature; and R is the gas constant. The precise form of these equa-

tions depends on the details of the various processes.
5. FORMULATION OF STAGE II CRACK GROWTH RATE

By incorporating the various parameters into Eqn. (3), the final

formulas for Stage II crack growth are obtained.

-11-
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For transport control

(da/dt)II = (?aifiki)é

('zi:a,.fiK,-)nt(po/T*) (10.a)

For surface reaction control

(da/dt) = (i.:aifiri)nspomexp(-Es/RT) (10.b)
p For diffusion control
2 (da/dt) = (gaifixi)ndpo*exp(-EdIZRT) (10.c)
-
[

In the equations, Ngs Ng and ng are the hydrogen supply rate coefficients
for transport control, surface reaction control and diffusion control,

respectively. The quantity (Z.Zaif,inci) is given by Eqn. (11)
i

[abfbrd(a3/n)Nxexp(HB/RT)

§°‘1fi‘i = <lmﬂa3/ﬁ)nxexpma/m

- a,(1-f.) SR
.:: + L b (]1) e
- T+8{a3/n]N, exp{Hg/RT) N
L These equations of stage II crack growth rates apply over the entire SRR
P
range of temperatures, from Region A to C, as long as a single process axee
for hydrogen supply is in control. The specific form, again, would depend i

T on the details of the controlling processes. For comparisons with experi-

mental data and for estimating certain parameters, the limiting forms of

(da/dt);; are considered. '
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6. COMPARISON OF THE MODEL TO EXPERIMENTAL DATA
Data on AISI 4340 steel, tested in hydrogen and in hydrogen sulfide
[7,9], are used to test the model. Results from the two environments

are considered separately in the following subsections.

6.1 Hydrogen

For tests in hydrogen, the rate of hydrogen supply is controlled by
the rate of surface reactfon [7]. In this case, the crack growth rate
is given by Eqn. (10.b). Nearly all of the parameters in this equation
are either known or can be estimated from the experimental data. Evalua-
tions of these parameters are described in Appendix II.

The two remaining unknowns are the density of trap sites in the
grain boundaries (Nx) and the non-equ11ibr1um parameter (t). For a given
microstructure, Nx must be a constant and ranges from 1019 to 1023 m'3
[23]. The parameter t, which was introduced into the Boltzmann equation
to account for non-equilibrium, may or may not be a constant. If equili-
brium is attained, then t would be constant and is equal to one. In
general, however, t is expected to be a function of temperature and
pressure. For now, as an initial effort, t is assumed to remain constant
for a given pressure. The pressure and temperature dependence for t
will be considered further in Section 7.

For the convenience of numerical analyses, an "apparent" density

of occupied trap sites in the grain boundaries (Napp) is defined, with -

N = tN,. Since all of the parameters, except Na in Eqn. (10.b) are

app X PP
known, a non-linear least-squares curve fitting program can be used to

S
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search for the value of Na that provides the best fit to the experimen-

PP

tal data. The best values of Na obtained are 3.8 x 1022, 2.88 x 1022

and 8.56 x 102! m 3 for hydrogenpgressures of 133, 57 and 13.3 kPa,
respectively. Based on these values, corresponding theoretical curves

of crack growth over the temperature range, extending from Region A'to c,
are computed from Eqn. (10.b) and are shown in Fig. 5. These results
indicate that the theoretical curves are in good agreement with the experi-
ment. The parameters used in the equation are listed in Table 1. It is

interesting to note that the best values of Na are appreciably differ-

ent for the three different pressures. The "azsarent" density of occupied
trap sites in the grain boundaries increased with increasing hydrogen
pressure. Because Nx is expected to remain constant, this fact clearly
indicates that t is not equal to 1 and that non-equilibrium condition needs
to be considered. The physical meaning of t and Nap is discussed in

p
Section 7.

6.2 Hydrogen Sulfide

In the case of hydrogen sulfide, the hydrogen supply rate is con-
trolled by gas transport at low pressure (0.133 kPa) [9]. At a higher pres-
sure (2.66 kPa), the supply rate is controlled by gas transport at
intermediate temperatures and by diffusion at the lower temperatures

[11, 16]. Hence, in examining the transition from Region A to Region C

growth, it is sufficient to consider only the gas transport controlled

case for both the low and high pressures. Thus, Eqn. (10.a) is used to

predict the crack growth response.




mr‘r’ N Aret Al s asen s .  a T—_— R — T ——— ) ol asul mie il M Re@ i Den el ardd pul ard gy e BBl Sl g b gt g —

e e e N N T TN e e TR T T S T T T T T EL L T NSRRI e e E SRS A S B SRR LA Sl At e iR

RS Pl AT A W R RS AN R a5l
.

-
-.' -

NS
AR
g

a® s
R

The same values of HB, a, n, and &, used for the hydrogen case, are
used here, Table 2. The same procedures were used to determine the coeffi-
cients and the other parameters. The apparent densities of occupied

trap sites, N, = N , are estimated to be 3.6 x 1022 m™3 and 4.2 x 1023 p°3

PP
for HZS pressures of 0.133 kPa and 2.66 kPa, respectively. Again, the
predicted curves of crack growth response are in good agreement with the

experimental data, as shown in Fig. 6.

7.  FURTHER CONSIDERATION OF THE MODEL
7.1 The Physical Meaning of t

The results given in the previous sections show that (i) the "apparent"

density of occupied trap sites at grain boundaries (Napp = 8,5x102! to

4.2x1023 m 3) s consistent with the range of values that have been pro-
posed for the density of trap sites at grain boundaries (10!° to 1023 m 3)

[23]; (i1) N varies with pressure, therefore, the parameter t is not

app
constant and non-equilibrium partitioning of hydrogen between lattice and

trap sites should be considered; and (iii) the exact value of t cannot

be determined from Na because Nx is not known.

Originally, Bock:ss stated that t could vary from O to 1, because
filling of the traps with H was achieved by diffusion of hydrogen from
the 1attiée into the trap sites. When equilibrium is not established,
then t must be smaller than 1 [24]. This claim that t is smaller than
one under non-equilibrium conditions, however, may not be always true.
when hydrogen enters the material preferentially through the traps, <

can be expected to be greater than one. Here, the establishment of




equilibrium is achieved by the transfer of hydrogen from the trap sites
into the lattice. The characteristics of this case may be described as
follows:
(i) Hydrogen enters the material directly through the
trap sites (such as prior austenite grain boundaries,
etc.) and then transfers into the lattice.
(ii) Hydrogen resides at the trap sites and is prevented

from diffusing into the lattice. As such, hydrogen

concentration could build up preferentially at trap
sites and cause 1t to become greater than 1. According
- ' to Pressouyre and Bernstein, the binding enthalpy to
FE the trap site, HB>60 kd/mol dictates irréeversibility in

hydrogen embrittliement situations [29].

(i11) If hydrogen enters the material predominantly through
grain boundaries, then the supersaturability of hydro-
gen should be proportional to the hydrogen supply rate.
Thus, T, as a measure of supersaturability, may be

directly related to the hydrogen supply rate.

From the foregoing discussion, it is believed that the systems which
were used to test the model belong to this case. This belief is supported

by the following observations:

(i) The crack paths at low temperatures (Region A) is
predominantly intergranular. At higher temperatures,
specifically in the transition region from A to C,

the fracture mode is mixed, but with a major part
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by grain boundary sepa}ation. These grain boundaries
_ are directly exposed to the environment and are
' expected to be the preferential paths for hydrogen
| . entry and diffusion.
. (i) The AISI 4340 steel, tempered at 477 K [6], contained
.‘ a high density of irreversible traps in the form of
high angle prior austenite grain boundaries [30].
: The binding enthalpy to the grain boundaries has been
l’ estimated to be 73 kd/mol, which satisfies the
requirement of binding enthalpy for strong traps.

(ii1) The pressure dependence of t is clearly shown by

that of Napp' The observed dependence of Napp on

hydrogen and on hydrogen sulfide pressure (determined

to be 0.62 and 0.84 power, respectively) compared well
ll with that for surface reaction controlled process

and with that for the transport rate of gases to the
crack tip, respectively [25]. These correlations
support the earlier assumption that the non-equilibrium
parameter t is proportional to the rate of hydrogen

supply to the material,

Thus, instead of assuming t to be a constant for a given pressure,
v is now assumed to be proportional to the hydrogen éupply rate and

is given in Eqn. {15).




.......
P P A A A

? ( Btntpo/T* Transport (12.a)
! T= < Bsnspbmexp(-Es/RT) Surface Reaction (12.b)
' o '
: k B4"dPo exp( Ed/2RT) Diffusion (12.¢)
. where the g8's are taken as the proportionality coefficients. This new
assumption is used to refine the original model.
‘ 7.2 Refinement of the Original Model
Substituting Eqns. (12.a) to (12.c) into Eqns. (10) and (11), a new
: set of crack growth rate equations are obtained and are as follows:
L,
. 1) For transport control
, 2
[ ngByoy8(a3/mIN, (p /TH)exp(Hg/RT)
"] (dafdt)yy =< :
T+n,8,5(a3/n)N, (p /T*)exp(Hg/RT)
':: . nta 2,(]-fb) } .
. 1+ntet6(a3/n)Nx(p°/T*)exp(HB/RT)
3

(pe/T) (13.2)
E 2) For surface reaction control
- 2 m
= noB_a, fi.6(a3/n)N P "exp[(H,-E_)/RT]
o (da/dt) = J’s sbb - X °m B s
2 [ 1+8gngs(a3/n)N p "expl(Hg-E¢)/RT]
- neo o(1-F,)
“ + s % - b ]> .
2 T+ 8.6(a3/n)N P Mexpl (Hg-E()/RT])
. poTexp(-E/RT) (13.b) >
i )
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3) For diffusion control

2 3
(da/dt),; = ‘J"dedabfba(as/")"xpo exp[(2Hg-E 4)/2RT]

. nge (1-f) L ]
T+ng848 (a3/n)N p *exp[ (2Hg-E,)/2RT])

po*exp(-Ed/zaT) ' (13.c)

With the indicated modifications, a new estimate of Hg of 88 kJ/mol
is obtained [25]. The difference between this value and the previous esti-
mate of 73 kd/mol is simply the activation energy for surface reaction (Es)
or 14.7 kJ/mol (rounded to 15 kd/mol). Using this new value of HB’ it is

seen that constant (though different) values of Na are obtained for hydro-

gen sulfide and for hydrogen (with the exception fz: the data at 13.3 kPa),
Table 3.

This finding is gratifying in that the density of trap site (Nx) is
expected to be a material constant and the coefficients Bgs Bps Nng and ng

are also constants. The difference in Na for hydrogen sulfide and hydro-

PP
gen reflects differences in the hydrogen supply coefficients (n) and the
coefficients for non-equilibrium partitioning (8), and requires further

study. The discrepancy between Na for hydrogen at the lowest pressure

PP
(13.3 kPa) and those at the other pressures may be attributed to either an
underestimation of Es from the crack growth data or the fact that a transfer

to gas-transport control had not been considered.

-19-
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It should be noted that the modified equations produced no significant
improvements in predicting the crack growth response for AISI 4340 steel
l in hydrogen. Some improvement , however, is obtained in the case of
5 hydrogen sulfide, and is indicated by the dashed curves in Fig. 6.
o
n 8.  DISCUSSION

The model proposed in this study has successfully combined the
achievements obtained from the micromechanism st:dies [23, 30-32] and the
identification of rate controlling processes for hydrogen supply [1,8,9,
28]. This unified "hydrogen partitioning" model successfully predicts
the rapid reduction of crack growth rate associated with the change in
fracture mode at high temperatures. This model may be of help in gaining
insight into the role of microstructural elements on hydrogen embrittle-
ment.

As an example, the effect of prior-austenite grain size on Stage
IT crack growth rate and crack growth response may be re-examined in terms
of this model. In the crack growth rate equations (13.a) to (13.c), a
parameter & is included and represents the volume ratio of grain boundar-
ies to the bulk. If the binding enthalpy HB’ the trap density and the
other parameters are assumed to be unaffected by grain size, it can be

seen readily that prior-austenite grain size affects only the temperature

Tnax® At which the crack growth rate attains its maximum. As shown in
Fig. 7, Tmax is observed to increase with decreasing grain size. At room
temperature, the effect of grain size would not be observed in Stage 1I

3
E
EQ crack growth rate data for grain sizes up to 100 um, because Tmax would

-20-
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be equal to or higher than 298K. When the grain size becomes larger than

100 um, T drops below 298 K and the coarse grained material may exhibit

max
higher resistance to crack growth, Fig. 7.

The 1imiting case is that of a single crystal where the volume ratio
s becomes zero. The crack growth rate is expected to be much slower
because of the absence of grain boundaries. The mean crack growth rate

(da/dt)II can then be described simply by Eqn. (14).

(da/dt);; = ,Q (14)

It should be noted that, however, the contribution of quasi-cleavage waé
neglected in deriving the crack growth equations. In the absence of
grain boundaries, quasi-cleavage may play an important role in hydrogen
embrittlement. Exclusion of its contribution, therefore, may not be rea-
sonable for single crystals and for coarse grained materials.

The contribution of quasi-cleavage to hydrogen embrittlement can be
readily estimated from the consideration of hydrogen-dislocation inter-

actions. The crack growth rate can then be described as follows:

(da/dt);; = (a fdnq +a.f ) (15)

q [N ]
In Egn. (15), <q and «, are the hydrogen distribution coefficients for

quasi-cleavage and for lattice; respectively, and are given as follows:

§'C_/C
- % 2 - 1 .
Kq = +6 q cz and K'z = +6 Cq/cg’ (16 a)
= 3
Cq/C2 T(a /n)Nxq exp(Hq/RT) (16.b)

-21-
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where Nx is the trapping density for quasi-cleavage, §' is the volume

q

fraction of quasi-cleavage sites, H_ is the binding enthalpy for hydrogen

to the quasi-cleavage planes. i
The proposed model can be readily extended to an examination of

the hydrogen-AISI 4130 steel system studied by Williams et al. [1-3]*.

Without changing the binding enthalpy HB’ good agreement is obtained

between the present model and their experimental data. The comparison

& is shown in Fig. 8, where fb = 1 and f2 = 0 are assumed. It should be

g noted that the form of crack growth rate equation given by the present

il model (Eqns. 16.a to 16.c) and that givén by Williams and Nelson [1-3]

are nearly the same. This similarity in form, however, does not indicate

;: agreement, because the physical bases of these two models are very differ-

ent. The Williams and Nelson model attributed the reduction of crack

‘} growth rate at the high temperatures to the reduction in hydrogen supply
' rate. The present model, on the other hand, attributes this change to a
partitioning of hydrogen amongst the different microstructural sites with
changes in temperature.

The effect of adsorption equilibrium, however, must still be consid-
ered as an additional contribution to the present model. For surface
reaction controlled process, substituting the hydrogen supply rate, 6,
given by Williams and Nelson into the present model, one can readily show
that the crack growth equation at high temperatures reduces to the follow-

ing form [25].

*Note that the Williams and Nelson data were obtained for a fixed Ky, and
do not necessarily correspond to Stage Il crack growth over the entire
temperature range. '
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B+2AH-2ES
en(da/dt) ;= an C + ( )

(17)

The quantity C is approximately constant if the weak temperature dependence
of f, and T is neglected.

Let the binding enthalpy to the grain boundaries, (HB), be equal or
greater than 58.6 kJ/mol1 and the apparent activation energy for surface
reaction E. = 14.7 kd/mol, then the heat of absorption, aH, needs to be
equal to or less than 14.7 kJ/mol to conform to the high-temperature crack
growth data. This preliminary result clearly shows that the apparent
heat of adsorption (aH) is relatively small in comparison with the binding
enthalpy to the grain boundaries. As such, the contribution of adsorption
equilibrium to the change in crack growth response in Region C is rather
small.

The proposed model can also account for the change in Stage II crack
growth rate from Region A to Region C in the 18Ni maraging steels. It
cannot, however, explain the sudden drop off in crack growth rates at the
higher temperatures, see Fig. 9. Mechanisms involving two-dimensional
grain boundary surface phase transformation, suggested by Gangloff and
Wei [4,5] and Chan, Klier, and Wei [34], could provide a good fit to the
experimental p-T conditions for the sudden drop off in Stage II crack
growth rate. The features of the interaction of hydrogen with particular
components of the steels that account for the specific responses, however,
are still unclear. Further determination of the relationship between
grain boundary composition and conditions of phase equilibria involving
hydrogen is essential to the development of high strength steels with high

resistance to hydrogen assisted crack growth [34].
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9.  SUMMARY

Results of the current study have provided an accurate characteriza-
tion of the crack growth response for high strength steel exposed to
gaseous H2 and HZS' The principal results from this study are summarized

as follows:

1. A model which combines recent achievements from studies of micro-

mechanisms of cracking and of rate controlling processes for environmen-

tally assisted crack growth is proposed. ;‘f

2. The model suggests that the main crack growth response for
hydrogen-assisted cracking is essentially determined by two basic factors:
(a) the rate of hydrogen supplied to the fracture process zone, which is
controlled by one of the rate controlling processes previously identified,
and (b) the partitioning of hydrogen amongst the different microstructural
elements or traps (principally between prior-austenite grain boundaries
and the matrix), which is controlled by the hydrogen-trap interactions
and determines the micro-crack growth rate for each element. The differ-

ent micromechanisms are assumed to operate in parallel.

3. Quantitative evaluation of the model in relation to crack growth
response has been carried out. By including experimentally observed
changes in fracture morphology, very good agreement between the model pre-
dictions and observed crack growth responses for AISI 4340 and 4130 steels

in H2 and HZS is obtained.
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4. Partitioning of hydrogen between prior-austenite grain boundaries
and matrix is shown to be a more reasonable explanation for the observed
crack growth response at "high" temperature, versus the explanations

offered by the surface reaction models.

5. Crack growth response is consistent with a binding enthalpy of

hydrogen to the prior-austenite grain boundaries of about 90 kJ/mol (vs. -

- about 60 kJ/mol reported by Hirth for iron).

_ 6. The contribution of prior-austenite grain size to hydrogen ‘@ .

o AT

?: embrittiement was examined by the model. The room temperature crack growth jﬁf‘-;

E rate is not expected to be sensitive to grain size up to 100 um. For $ﬁﬁfl

y s
grain size larger than 100 um, the room temperature crack growth rate may é!?;«f

Rtk
PR

decrease with increasing grain size, The fact that single crystals have

L an 4
PRl
PR

the highest resistance to hydrogen cracking is consistent with the model.

7. Adsorption equilibrium proposed by Williams et al. was considered
in relation to the proposed model for surface reaction controlled crack
growth. Preliminary estimates indicated that the apparent heat of adsorp-
tion may be relatively small and is less than 15 kJ/mol1. As such, the
contribution of adsorption equilibrium is QPt expected to be an important

cause for the decrease in crack growth rates at "high" temperatures.

8. Neither partitioning of hydrogen nor adsorption equilibrium can

account for the observed "high" temperature response of 18Ni maraging steel

in hydrogen. The two-dimensional phase transformation model proposed by Mol
Chan, Klier and Wei is currently the only reasonable altermative and requires §S§S§
further study. XN
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Appendix I: Equilibrium Partition of Hydrogen

Following Hirth [23], the appropriate reaction for hydrogen with a
single trap site X is given by Egn. (I-1)

H+ X 2 HX (1-1)

The corresponding equilibrium partitioning of hydrogen can be expressed

by either the Boltzmann [22] or the Femmi-Dirac Statistics [23]:
H, = H, exp(HB/RT) (I-1a)
Hx/(l-Hx) = H, exp(HB/RT) (I-1b)

where Hx and H2 are the concentrations of hydrogen about the trap sites
and in the lattice (in atom fraction) respectively.

In considering the partitioning of hydrogen between grain boundaries
and the lattice, the following relationships between atom fraction and

molal concentration is used:

Cux = (N/2NpH, (1-2a)
C, = (N/2NH, = [(n/a3)/2N,JH, (1-2b)

In Eqns. (I-2a) and (I-2b), N, is the density of trap sites in the grain
boundaries (numbers/m3); No is the density of perfect lattice sites and

can be approximated by n/a3, where a is the lattice parameter of the metal
and n is the number of atoms per unit cell; and NA is the Avogadro's con-
stant. The corresponding equilibrium partitioning of hydrogen between

the grain boundary trap sites and the lattice (in molal concentrations) can

be expressed as follows:
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Cl(a3/n)Nx exp(Hg/RT) Boltzmann (1-3a)

(a3/n)Nxc2 exp(HB/RT)

= I-3b
Cx = TRZ(EITRIN,C, exp(Rg/RT) Fermi-Dirac (I-3b)
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Appendix II: Estimation of Parameters from
Crack Growth Data

The crack growth rate and hydrogen partition equat%ons contain a
number of parameters that must be prescribed or estimated from the experi-
mental data, For the lattice parameter (a), a value of 0.287 nm for «-
iron is used. The number of atoms per unit cell n is equal to 2. The
volume ratio between the prior-austenite grain boundaries and the bulk,

§, is estimated to be 10™“, based on an average prior-austenite grain
size of 20 um for the steel used in this study and an assumed grain boun-
dary thickness of 1 nm. The other coefficients, namely n's, a's (or the
product na) and HB’ are estimated by matching the crack growth rate equa-
tions to the experimental data over specific temperature regions. The

detailed estimation procedures are given in the following subsections.

By examining Eqns. (8a), (10) and (11), it can be seen that the term
C,/C, = (a3/n)Nx exp(HB/RT) is much greater than one in the low tempera-
ture region. Hence the prior-austenite grain boundaries are essentially
saturated with hydrogen (Kb=1), and cracking is expected to occur princi-
pally along these boundaries, with fb=1. The crack growth relations,
Eqn. (10), then reduces to the following form:

ntub(p/T*) Transport (II1-1a)
(da/dt)II = < nsabpmexp(-Es/RT) Surface Reaction (II-1b)

[ ndabp%exp(-Ed/ZRT) Diffusion (II-1¢c)
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: These equations are identical in form to those given by Wei [11]. -
Equation (II-1) can be used to determine the coefficients ey Ny
i and nga, from the experimental data on crack growth [25].
: Estimation of Ngdys Nea, and g%,
.! In the high temperature region, the term cb/cz becomes very small,
: and Xy then approaches one. In other words, most of thé hydrogen now
goes into the matrix and cracking is expected to occur fully by micro-
F’ void coalescence (i.e., fz=1)' In this case, (da/dt)II reduces to the
%j following form:
3 e o
~ "t“z(p/ ) Transport (I1-2a)
:;L (da/dt)II = < nsazpm exp(-Es/RT) Surface Reaction (II-ZB)
F ng,P? exp(~E4/2RT) Diffusion (11-2¢)

& Equation (II-2) may be used to estimate the coefficients ngd, s Mgl and

g, from the appropriate crack growth data [25].

Estimation of Binding Enthalpy, HB

It is recognized that, at the early stage of transition into Region C

& with increases in test temperature, the areal fraction of intergranular gﬁ;;ﬁ
5; (i.e. grain boundary) separation is almost equal to 1 [16,25]. Also, L
&E the rate of crack growth by micro-void coalescence is negligibly small in

b: comparison with that by grain boundary separation (i.e., o, is at least

3 orders of magnitude below oy [25]). The contribution of micro-void
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coalescence to the crack growth rate (da/dt)II, therefore, may be ignored.

Equation (10) then can be reduced to the following form:

npopy78(a3/nIN, (P/T?)exp(Hy/RT) (11-3a)
(da/dt)yy = < nsabfbrs(a3/n)prmexp[(HB-Es)/RT] (I11-3b)
ndabfbrs(a3/n)pr’*exp[(zuB-Ed)/ZRT] (11-3¢)

Equation (II-3) can be used to estimate the binding enthalpy for hydrogen
to the prior-austenite grain boundaries (HB) from the experimental data
on Stage II crack growth in the Tower temperature portion of Region C.

For this estimate, Eqn. (II-3b) and the data for surface reaction
controlled growth in an AISI 4340 steel at a hydrogen pressure of 133 kPa
[7] are used. In Eqn. (II-3b),all the coefficients except f, and t
are constant for a given material and environment. Fractographic analyses
have shown that fb varied from i to 0.8 when the temperature was increased
from region A up to the highest temperature tested in Region C [16,25]l
Because of this weak dependence on temperature, fb=1 is assumed. The non-
equilibrium coefficient, r, may be assumed to depend either strongly or
weakly on temperature. In either case, v can be considered as a constant
for a given pressure (see sections 6 and 7). Finally, from a plot of
en(da/dt) vs. 1/T shown in Fig. (II-1)[7], the binding enthalpy of hydrogen
to the prior-austenite grain boundaries is estimated to be approximately
73 kd/mol1. This value is higher than, but is still comparable to, the
value of 58.6 kJ/mol suggested by Hirth [23].
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Table 3: Parameters Associated with the Modified Model
for Crack Growth in AISI 4340 Steel.
a. Hydrogen
Pressure Eg Hp Napp P BsnsNx
kPa kJ /mol kJ /mol (kPa)~1m-3
133 14.7 88 3.42 x 1021
57 14.2 88 3.42 x 1021
13.3 8.8 88 2.99 x 1020
b. Hydrogen Sulfide.

Pressure Es Hg Napp « BeNeNy
kPa kd/mol kd/mol K(kPa)"lm’3
2.66 88 5.39 x 1021
0.133 88 5.39 x 1021

Note: 8§, Ng&ps Nglys Ny and n.a, are given in Tables 1 and 2.
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Fig. 1: Schematic illustration of sequential processes involved
in the embrittlement of ferrous alloys by external environ-
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Fig. 2: The temperature dependence and the corresponding rate con-
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HYDROGEN SUPPLY

Surface Reaction Conlrol
Transport Control
Diffusion Control

[16].

------

PRIOR AUSTENITE

GRAIN BOUNDARIES 16 (T.P)

{no},.{12},. rtanes
Mariensile (alb Boundaries
or Palch Boundaries

QC (T, ) ———> — (da/dtl“

-+ MARTENSITE LATTICE. ————— MVC (T, P)

Fig. 3: Illustration of subdivision of hydrogen assisted cracking
sequence into supply, partitioning and embrittlement portions
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Fig. 6:

Comparison between model predictions and data for AISI

4340 steel tested in hydrogen sulfice at two pressures
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